lunes, 8 de abril de 2019

TRANSFORMACION BIDIMENSIONAL

Las transformaciones nos permiten alterar de una forma uniforme toda la imagen. Es un hecho que a veces es más fácil modificar toda la imagen que una porción de ella. Esto supone un complemento muy útil para las técnicas de dibujo manual, donde es normalmente más fácil modificar una pequeña porción del dibujo que crear un dibujo completamente nuevo.
La composición de transformaciones bidimensionales consiste en la mezcla de las transformaciones bidimensionales básicas como son traslación, sesgado y escalado.
Notemos que no mencionamos la rotación como una transformación básica, esta es en realidad la combinación de escalado y sesgado.



REPRESENTACION MATRICIAL DE LAS TRANSFORMACIONES BIDIMENCIONALES


En las aplicaciones de diseño y de creación de imágenes, realizamos traslaciones, rotaciones y escalaciones para ajustar los componentes de la imagen en sus posiciones apropiadas. En este tema consideramos cómo se pueden volver a formular las representaciones de la matriz de modo que se pueden procesar de manera eficiente esas secuencias de transformación. Es posible expresar cada una de las transformaciones básicas en la forma de matriz general con las posiciones de coordenadas P y P’ representadas como columnas de vector.
Con las representaciones de matriz podemos establecer una matriz para cualquier secuencia de transformaciones como una matriz de transformación compuesta al calcular el producto de la matriz de las transformaciones individuales. La creación de productos de matrices de transformación a menudo se conoce como concatenación o composición de matrices.
  • Traslaciones
Se se aplican dos vectores de traslación sucesivos (tx1, t y1) y (tx2 , t y2 ) en la posición de coordenadas P, la localización transformada final P, la localización transformada final P’ se calcula como: P'=T(t x2,t2)·T(tx1,ty1)·P}{=T(tx2, 2)·T(t x1,t y1)}{·P
Donde se representan P y P’ como vectores de columna de coordenadas homogéneas. Podemos verificar este resultado al calcular el producto de la matriz para las dos agrupaciones asociativas. Asimismo, la matriz de transformación compuesta para esta secuencia de transformaciones.


  • Rotaciones
Dos rotaciones sucesivas que se aplican en el punto P producen la posición transformada P'=R(θ2)·R(θ1){·P}=R(θ2){· (θ1)}·PAl multiplicar las dos matrices de rotación, podemos verificar que dos rotaciones sucesivas son aditivas


  • Escalamiento
La siguiente figura ilustra una secuencia de transformación para producir escalación con respecto de una posición fija seleccionada (xf,f) al utilizar una función de escalación que sólo puede escalar en relación con el origen de las coordenadas.




No hay comentarios:

Publicar un comentario